Andreas Jungherr
  • Home
  • About
  • Blog
  • Publications
    • Digital Transformations of the Public Arena (2022)
    • Retooling Politics: How Digital Media Are Shaping Democracy (2020)
    • Analyzing Political Communication with Digital Trace Data (2015)
    • Das Internet in Wahlkämpfen: Konzepte, Wirkungen und Kampagnenfunktionen (2013)
  • Podcast: Tech and Politics
  • Media
  • Teaching
  • Impressum
  • Home
  • About
  • Blog
  • Publications
    • Digital Transformations of the Public Arena (2022)
    • Retooling Politics: How Digital Media Are Shaping Democracy (2020)
    • Analyzing Political Communication with Digital Trace Data (2015)
    • Das Internet in Wahlkämpfen: Konzepte, Wirkungen und Kampagnenfunktionen (2013)
  • Podcast: Tech and Politics
  • Media
  • Teaching
  • Impressum
14 Oct 2016
Andreas Jungherr Teaching 1 Comment
2016/10/14 Andreas Jungherr

Sozialwissenschaftliches Arbeiten mit Twitter-Daten (Luzern): Session 1 – Conceptual Issues in the Use of Digital Trace Data in Social Science, Computational Social Science, Digital Methods, and Big Data

Welcome to the course! You have an interesting four days to look forward to. At the end of which, I hope you are at least as excited by the work with digital trace data as you are now but of course much more able to translate that excitement into actual scientific projects.

In our first session, we will discuss the background of working with digital trace data. We will start by discussing some of the expectations connected with this new data sources. Here, we will discuss the terms Computational Social Science, Digital Methods, Big Data, and Digital Trace Data.

We then will focus on two prominent fallacies in the work with digital trace data:

  1. The n = all fallacy;
  2. The mirror hypothesis

Both fallacies can be found explicitly or implicitly in prominent works based on digital trace data. They are central to limiting the value of research based on digital trace data and to raising false expectations of which types of insight these data type can actually deliver.

Central to avoiding these fallacies are three often neglected steps:

  1. Start by clearly thinking about research design in working with digital trace data.
  2. Keep the data generating process in mind that led to the production of specific data sets. Doing so will help you in deciding and justifying for which social or political phenomena specific sets of digital trace data might hold promising insights.;
  3. Explicitly establish and test a theoretical link between the data collected by you online and your phenomenon of interest. Without such a link, you run the risk of falling for spurious correlations instead of offering insights.

In this context, we will quickly talk about the value of interpreting digital trace data as mediated traces of user behavior and, therefore, mediated reflections of social or political phenomena of interest.

After this, we will close by discussing a series of interesting questions in political science closely related to the data generating process leading to the publication of tweets and, therefore, closely connected with digital trace data.

Mandatory Readings:

  • Pascal Jürgens and Andreas Jungherr (2016) A Tutorial for Using Twitter Data in the Social Sciences: Data Collection, Preparation, and Analysis. Social Science Research Network (SSRN). doi: 10.2139/ssrn.2710146, pp. 7-14.

Background Readings:

  • David Donoho. 50 Years of Data Science. Paper presented at the Tukey Centennial workshop, Princeton, NJ. Sept. 18 (2015).
  • Bradley Efron, and Trevor Hastie. Computer Age Statistical Inference: Algorithms, Evidence and Data Science. Cambridge: Cambridge University Press.
  • Deen Freelon. “On the interpretation of digital trace data in communication and social computing research“. In: Journal of Broadcasting & Electronic Media 58.1 (2014), pp. 59–75. doi: 10.1080/08838151.2013.875018.
  • Scott A. Golder and Michael W. Macy. “Digital Footprints: Opportunities and Challenges for Online Social Research“. In: Annual Review of Sociology 40 (2014), pp. 129–152. doi: 10.1146/annurevsoc071913043145.
  • James Howison, Andrea Wiggins, and Kevin Crowston. “Validity issues in the use of social network analysis with digital trace data“. In: Journal of the Association for Information Systems 12.12 (2011), pp. 767–797.
  • Andreas Jungherr and Pascal Jürgens. “Forecasting the pulse: How deviations from regular patterns in online data can identify offline phenomena“. In: Internet Research 23.5 (2013), pp. 589–607. doi: 10.1108/IntR-06-2012-0115.
  • Andreas Jungherr, Harald Schoen, and Pascal Jürgens. “The mediation of politics through Twitter: An analysis of messages posted during the campaign for the German federal election 2013“. In: Journal of Computer-Mediated Communication 21.1 (2016), pp. 50.68. doi: 10.1111/jcc4.12143.
  • Andreas Jungherr, Harald Schoen, Oliver Posegga, and Pascal Jürgens. “Digital Trace Data in the Study of Public Opinion: An Indicator of Attention Toward Politics Rather Than Political Support“. In: Social Science Computer Review. (2016). doi: 10.1177/0894439316631043.
  • David Lazer et al. “Computational social science“. In: Science 323.5915 (2009), pp. 721–723. doi: 10.1126/science.1167742.
  • David Lazer et al. “The Parable of Google Flu: Traps in Big Data Analysis“. In: Science 343.6176 (2014), pp. 1203–1205. doi: 10.1126/science.1248506.
  • Viktor Mayer-Schönberger and Kenneth Cukier. Big Data: A Revolution that Will Transform How We Live, Work, and Think. New York, NY: Houghton Mifflin, 2013.
  • Richard Rogers. Digital Methods. Cambridge, MA: The MIT Press, 2013.
  • Derek Ruths and Jürgen Pfeffer. “Social media for large studies of behavior“. In: Science 346.6213 (2014), pp. 1063–1064. doi: 10.1126/science.346.6213.1063.
  • Matthew Salganik. Bit by Bit: Social Research in the Digital Age. (Forthcoming).
  • Markus Strohmaier and Claudia Wagner. “Computational Social Science for the World Wide Web“. In: IEEE Intelligent Systems 29.5 (2014), pp. 84–88. doi: 10.1109/MIS.2014.80.

Course Material:

  • Session 1: Conceptual Issues in the Use of Digital Trace Data in Social Science, Computational Social Science, Digital Methods, and Big Data – Slides

Back to Course Overview.

Big Data, Computational Social Science, Course Material, Digital Methods, Digital Trace Data, Python, Using Digital Trace Data in the Social Sciences

Comment (1)

  1. Pingback: Sozialwissenschaftliches Arbeiten mit Twitter-Daten: Luzern-Edition | Too Bad You Never Knew Ace Hanna

Comments are closed.

  • Recent Posts

    • Interview mit hr-iNFO: Trump twittert wieder
    • Welche Rolle spielt Desinformation in den US Midterms 2022?
    • New Publication: Review of Vaccari & Valeriani – Outside the Bubble (2021)
    • Lehrveranstaltungen Wintersemester 2022/3
    • Keynote: Digitaler Wandel im Kaleidoskop der Sozialwissenschaft
  • Categories

    • Conferences
    • Interviews
    • Lecture Podcast
    • News
    • Notes
    • Public Speaking
    • Publications
    • Teaching
    • Videos
  • Archives

    • December 2022 (1)
    • November 2022 (1)
    • October 2022 (3)
    • July 2022 (1)
    • June 2022 (4)
    • May 2022 (2)
    • April 2022 (1)
    • February 2022 (1)
    • January 2022 (2)
    • December 2021 (3)
    • November 2021 (1)
    • October 2021 (2)
    • September 2021 (3)
    • July 2021 (1)
    • June 2021 (4)
    • April 2021 (3)
    • March 2021 (2)
    • January 2021 (1)
    • December 2020 (1)
    • November 2020 (2)
    • October 2020 (2)
    • September 2020 (1)
    • July 2020 (1)
    • June 2020 (1)
    • April 2020 (5)
    • March 2020 (2)
    • February 2020 (1)
    • January 2020 (4)
    • November 2019 (1)
    • October 2019 (2)
    • September 2019 (1)
    • July 2019 (1)
    • April 2019 (3)
    • January 2019 (1)
    • November 2018 (1)
    • September 2018 (2)
    • March 2018 (1)
    • February 2018 (1)
    • December 2017 (1)
    • October 2017 (1)
    • September 2017 (1)
    • July 2017 (2)
    • June 2017 (1)
    • May 2017 (3)
    • April 2017 (2)
    • March 2017 (2)
    • January 2017 (2)
    • December 2016 (1)
    • November 2016 (1)
    • October 2016 (17)
    • July 2016 (11)
    • June 2016 (1)
    • March 2016 (1)
    • February 2016 (2)
    • January 2016 (1)
    • November 2015 (3)
    • October 2015 (1)
    • September 2015 (3)
    • May 2015 (1)
    • April 2015 (3)
    • March 2015 (3)
    • February 2015 (3)
    • January 2015 (1)
    • October 2014 (2)
    • August 2014 (2)
    • April 2014 (1)
    • March 2014 (1)
    • February 2014 (2)
    • December 2013 (1)
    • October 2013 (3)
    • September 2013 (3)
    • August 2013 (4)
    • July 2013 (3)
    • June 2013 (2)
    • May 2013 (1)
    • April 2013 (1)
    • March 2013 (1)
    • February 2013 (1)
    • December 2012 (1)
    • November 2012 (2)
    • October 2012 (3)
    • September 2012 (3)
    • August 2012 (2)
    • June 2012 (1)
    • April 2012 (8)
    • March 2012 (1)
    • February 2012 (1)
    • October 2011 (2)
    • September 2011 (1)
    • August 2011 (1)
    • July 2011 (5)
    • June 2011 (2)
    • May 2011 (4)
    • April 2011 (1)
    • March 2011 (2)
    • February 2011 (3)
    • January 2011 (2)
    • December 2010 (3)
    • November 2010 (1)
    • October 2010 (1)
    • September 2010 (3)
    • July 2010 (1)
    • June 2010 (2)
    • May 2010 (1)
    • April 2010 (4)
    • March 2010 (3)
    • February 2010 (6)
    • January 2010 (1)
    • December 2009 (3)
    • August 2009 (1)
    • April 2009 (1)
    • March 2009 (3)
    • January 2009 (2)
    • December 2008 (3)
    • November 2008 (3)
    • October 2008 (9)
    • August 2008 (1)
  • On the web

    • instagram
    • linkedin
    • twitter
    • xing
    • youtube
  • Navigation

    • Home
    • About
    • Blog
    • Publications
      • Digital Transformations of the Public Arena (2022)
      • Retooling Politics: How Digital Media Are Shaping Democracy (2020)
      • Analyzing Political Communication with Digital Trace Data (2015)
      • Das Internet in Wahlkämpfen: Konzepte, Wirkungen und Kampagnenfunktionen (2013)
    • Podcast: Tech and Politics
    • Media
    • Teaching
    • Impressum
  • Contact

    • Feldkirchenstraße 21
      96052 Bamberg, Germany

    • https://andreasjungherr.net/
    • andreas.jungherr[at]uni-bamberg.de
Andreas Jungherr POWERED BY United Themes™